1. INTRODUCTION

Compressed and liquefied gases are routinely used in laboratories and various other operations at the University of Tennessee. These Guidelines provide information on their safe use and apply to all UT employees who use or otherwise handle compressed or liquefied gases or systems that use compressed or liquefied gases.

Compressed and liquefied gases have the potential for creating hazardous working environments. UT promotes the safe use of gases by offering training and information on the proper storage, handling, use and disposal of compressed and liquefied gas cylinders. The information in these guidelines apply to all compressed and liquefied gases; however, specific information for selected hazard classes is contained in Section 6, Gases with Specific Hazards.

Laboratories: Standard laboratory PPE, including safety eye wear and a lab coat, are required when using compressed gases. Gloves may also be required, depending on the chemical or physical hazards of the gas. Additionally, when moving or transporting a gas cylinder, hard-toed shoes are required.

Shops and other Non-Laboratory Areas: Safety glasses are required when working with compressed gas cylinders. Gloves may also be required, depending on the chemical or physical hazards of the gas. Additionally, when moving or transporting a gas cylinder, hard-toed shoes are required.
2. STORAGE

Proper storage is critical for the safe use of compressed and liquefied gases. Hazard information regarding the gases stored should be prominently posted in cylinder storage areas. The National Fire Protection Association (NFPA) 704 diamond, with a cylinder indicated in the “specific hazard” (white) section of the diamond and the corresponding flammability, health and reactivity hazard sections also marked, is an accepted method of signage. Other storage requirements are outlined below.

Store gas cylinders:
- In an upright position.
- Within a well-ventilated area.
- Separate from empty cylinders.
- In the order in which they are received.
- With a chain or appropriate belt above the midpoint, but below the cylinder’s neck. Laboratory cylinders less than 18 inches tall may be secured by approved stands or wall brackets.
- With the cap on when not in use.
- Gases with the same hazard class are stored in the same area. Inert gases are compatible with all other gases and may be stored together.
- At least 20 feet away from all flammable, combustible or incompatible substances. Storage areas that have a noncombustible wall at least 5 feet in height and with a fire resistance rating of at least 30 minutes may be used to segregate gases of different hazard classes in close proximity to each other.

Do not store gas cylinders:
- In exits or egress routes.
- In damp areas; near salt, corrosive chemicals, fumes, heat; or exposed to the weather without a roof housing.
- Longer than one year without use.
The maximum allowed usage and storage of flammable or toxic compressed gases within a laboratory work area are defined in Table 1.

Table 1: Maximum Expanded Volume Quantity (ft³) Limitations For Flammable or Toxic Compressed or Liquefied Gas Cylinders In Laboratories(1)*

<table>
<thead>
<tr>
<th></th>
<th>Ventilated Enclosure</th>
<th>Ventilated Enclosure</th>
<th>Non-Ventilated Enclosure</th>
<th>Non-Ventilated Enclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sprinklered Room</td>
<td>Non-Sprinklered Room</td>
<td>Sprinklered Room</td>
<td>Sprinklered Room</td>
</tr>
<tr>
<td>Highly Toxic (²)</td>
<td>40</td>
<td>20</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Toxic / Corrosives (²) (⁴)</td>
<td>3240</td>
<td>1620</td>
<td>1620</td>
<td>810</td>
</tr>
<tr>
<td>Flammable (³)</td>
<td>4000</td>
<td>2000</td>
<td>2000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Notes:
(1) Consult manufacturer or your safety office for expanded volume data for various sized cylinders.
(2) International Building Code (IBC) definition listed in Appendix I.
(3) Appendix II: Any material with a “y” in the flammability column (for materials classified as both flammable and toxic, defer to the toxic limitations).
(4) All ammonia storage containers must be stored and used in a ventilated enclosure, per EH&S requirement.

* 2006 International Building Code

Contact EHS at 974-5084 if you have cylinder use questions.
3. HANDLING

Compressed gases must be handled by properly trained persons. Training must include the contents in these guidelines as well as any specific information relevant to the gas being used.

To safely handle gas cylinders:

- **Never** drag or physically carry cylinders (lecture cylinders may be carried).
- **Never** pick up by the cap.
- **Never** paint a cylinder.
- **Never** leave cylinders in areas where they will be subject to damage from falling objects, corrosion or public tampering.
- **Never** subject cylinders to artificially created low temperatures without approval from the supplier.

Lifting and moving requirements:

- Wear hard-toed shoes.
- **Do not** use ropes, chains and slings to suspend cylinders, unless the cylinder was designed for that use.
- **Do not** use magnets to lift cylinders.
- **Use** only suitable cradles or platforms to hold a cylinder when lifting.
- Use a hand-truck designed for the transport of cylinders.
- Secure cylinder caps during transport.

- **Vehicle Transport**
 - Only transport cylinders or cryogenic liquid containers in university vehicles.
 - Cylinders or cryogenic liquid containers must only be transported in a truck bed and properly secured.
 - Do not transport cylinders of cryogenic liquid containers in the passenger compartment of any vehicle.

- **Elevator Transport**
 - Do not accompany a compressed gas cylinder containing highly toxic gas on an elevator.
 - Place the cylinder in the elevator and press the destination floor.
 - Attach a sign to the cylinder, telling others not to use the elevator during the cylinder’s trip.
 - Another person should be stationed at the destination of the elevator entry.
4. TRAINING

General Compressed Gas Cylinder Training is available online. Completion of the online training course and a review of this manual will help ensure that gas cylinders are safely used. An overview of specific health or safety concerns related to a gas use should be part of site specific training. As with any chemical, read the gas’s safety data sheet before you begin using the gas. Gas cylinders are used in various areas within the university, including mechanical shops and laboratories.

5. GENERAL USE REQUIREMENTS

To safely use valves and regulators:

- Be sure the regulator pressure control valve is relieved (i.e., closed) before attaching it to cylinders.
- **Do not** stand in-line with the regulator and valve outlet when attaching the regulator to the cylinder.
- Close valves on gas cylinders when a system is not in use.
- Remove all pressure from regulators not currently used (by opening equipment valves downstream after the regulators are closed).
- **Do not** install shut-off valves between pressure relief devices and the equipment they protect.
- Use pressure relief valves in downstream lines to prevent high pressure buildup in the event that a regulator valve does not seat properly and a tank valve is left on.
- Vent relief valves to a fume hood or ventilated gas cabinet, when using flammable or toxic gases.
- Pressurize regulators slowly and ensure that valve outlets and regulators are pointed away from all personnel when cylinder valves are opened.
- Leave the wrench in place on the cylinder valve, when needed, to open the main valve. Use adequately sized wrenches (12 inches long) to minimize ergonomic stress when turning tight tank valves. Cylinders with “stuck” valves should be returned to suppliers to have valves repaired.
- Fully open valves during cylinder use. A fully open valve improves the internal seal and helps prevent packing leaks.
- Use a cylinder cap hook to loosen tight cylinder caps. Never apply excessive force to pry off caps. Return a cylinder to the supplier to remove “stuck” caps.

To safely use gas cylinders:
- **Never** apply excessive force when trying to open valves. Don’t use cheaters (wrench extensions).
- **Never** allow flames or concentrated heat sources to come in contact with a gas cylinder.
- **Never** allow a gas cylinder to become part of an electrical circuit.
- **Never** partially open a cylinder valve to remove dust or debris from the cylinder inlet.
- **Never** use cylinder gas as a compressed air source.
- **Never** use adapters or exchange fittings between tanks and regulators.
- **Never** use Teflon™ tape on Compressed Gas Association (CGA) fittings (straight thread) where the seal is made by metal-to-metal contact. Use of Teflon™ tape causes the threads to spread and weaken, increasing the likelihood of leaks. Small pieces of tape can also become lodged in the valve mechanism resulting in possible valve failure.
- **Never** attempt to open a corroded valve; it may be impossible to reseal or it may break and release the cylinder’s contents.

The following information applies to the use of manifolds, piping, valves and/or regulators:

- Where compressed gas cylinders are connected to a manifold, the manifold and its related equipment, such as regulators (see Appendix IV), must be of proper design for the product(s) they are to contain at the appropriate temperatures, pressures and flows.
- Use only approved valves, regulators, manifolds, piping, and other associated equipment in any system that requires compressed gas.
 - Be sure pressure gauges on regulators are correct for the pressure of the gas cylinder used.
 - Gas threads, configurations and valve outlets are different for each class of gases to prevent mixing of incompatible gases. Lecture bottles are an exception.
- Lecture bottles use universal threads and valves, some of which are interchangeable. Label all associated equipment with the gas name, to prevent unintentional mixing of incompatible materials.
- Compressed Gas Association Pamphlet V-1: “Standard for Compressed Gas Cylinder Valves,” lists the appropriate valve for each gas. Manufacturers and distributors should also be able to identify the valves and associated equipment required for each gas.
- Contact EHS at 974-5084 with cylinder use questions.

The following information applies to the use of system piping, regulators, manifolds and other apparatuses:

- Keep piping, regulators and other apparatuses gas tight to prevent gas leaks.
- Confirm the connection seal by using compatible leak test solutions (e.g., soap and water) or leak test instruments.
- Release pressure from systems before connections are tightened or loosened and before any repairs.
- Fluorescent light can be used to check for grease or oil in regulators.
Valve and Regulator Maintenance

- Know the valve and regulator maintenance histories before use.
- Valves and regulators should undergo periodic maintenance and repair as necessary.
- Perform a visual inspection before each use to detect any damage, cracks, corrosion, or other defects.
- Valves that pass visual inspection are still subject to failure. It is critical that toxic or poisonous gases (see Appendix II) are used in ventilated enclosures and have local exhaust ventilation in place for downstream pressure relief valves.
- Long term maintenance or replacement periods vary with the types of gases used, the length of use, and conditions of use. Consult the cylinder, regulator or gas supplier for recommended valve and regulator maintenance schedules.
- Valves and regulators should only be repaired by qualified individuals. Consult valve and regulator manufacturers, gas supply companies, or valve and regulator specialty shops for any repair needs.

The following labeling requirements apply to all gas cylinders:

- Use only the vendor label for positive identification of contents of the cylinder. Be aware that color coding may be inconsistent from vendor to vendor.
- Mixed gases must be clearly labeled with the contents of the cylinder.
- Empty cylinders must be labeled with the word “empty.”
- Know the contents of each cylinder you are using. Preferred labeling includes the identity of the material, statement of hazard and the associated signal word. For example, the preferred label for nitrogen would be:

 ![CAUTION
Nitrogen
High Pressure Gas
Can Cause Rapid Suffocation](image)

Use these sources of information for the warning and hazard information required on cylinders:

- Air Products,
- Matheson and other gas company catalogs,
- The CGA Pamphlet C-7: “Precautionary Labeling and Marking of Compressed Gas Cylinders,”
- The manufacturer or distributor of the gas.

Contact EHS at 974-5084 with cylinder use questions.

- Only the gas supplier is allowed to mix gases in a cylinder.
- Do not use cylinders for any other purpose than holding the contents as received.
- Leaking, defective, fire burned, or corroded containers must not be shipped without the prior approval
SPECIFIC HAZARD CLASSES

This section provides additional guidance to be used in conjunction with the general use requirements listed in Section 4.

Corrosive Gases
Examples include chlorine, hydrogen chloride, fluorine, hydrogen fluoride, and hydrogen sulfide.

- Remove regulators after use and flush with dry air or nitrogen.
- Metals become brittle when used in corrosive gas service; check equipment and lines frequently for leaks.
- Use a diaphragm gauge with corrosive gases that would destroy a steel or bronze gauge. Check with the gas supplier for recommended equipment.

Cryogenic Liquids and Gases
Cryogenic liquids and their boil-off gases rapidly freeze human tissue and cause embrittlement of many common materials. All cryogenic liquids produce large volumes of gas when they vaporize and may create oxygen-deficient conditions. Examples of common cryogenic liquids include liquid oxygen, hydrogen, helium, and liquid neon. The following information applies to the use and handling of cryogenics:

- Use appropriate personal protective equipment, including insulated gloves, lab coat and eye protection (goggles and a face shield) during any transfer of cryogenic liquid.
- In the event of skin contact with a cryogenic liquid, do not rub skin; place the affected part of the body in a warm water bath (not to exceed 40°C [105°F]). If a burn is significant, seek medical attention.
- Use only equipment, valves and containers designed for the intended product, service pressure and temperature.
- Inspect containers for loss of insulating vacuum. *If the outside jacket on a container is cold or has frost spots, some vacuum has been lost.* Empty the contents into another cryogenic container and remove the damaged unit from service. Repairs should be made by the manufacturer or an authorized company.
- Transfer operations involving open cryogenic containers, such as dewars, must be conducted slowly to minimize boiling and splashing of the cryogenic fluid.
- Ice or other foreign matter should not be allowed to accumulate beneath the vaporizer or the tank. Excessive ice buildup could result in the discharge of excessively cold gas or structural damage to the cryogenic container or surroundings.
- All cryogenic systems, including piping, must be equipped with pressure relief devices to prevent excessive pressure build-up. Pressure reliefs must be directed to a safe location. Do not tamper with pressure relief valves or the settings for the valves.
- Hot air, steam or hot water should be used to thaw frozen equipment. Exception: Do not use water to thaw
liquid helium equipment.

- For vehicle transportation, cryogenic liquid containers must only be transported in a university truck bed and not within a vehicle's passenger.

Some common examples of flammable gases include acetylene, hydrogen, methane, propane, carbon monoxide, and isobutane. See Appendix II for a list of flammable gases.

- Flammable gases, except for protected fuel gases, must not be used near ignition sources. Ignition sources include open flames and sparks, sources of heat, oxidizing agents and ungrounded or non-intrinsically safe electrical or electronic equipment.
- Portable fire extinguishers must be available for fire emergencies. The fire extinguisher must be compatible with the apparatus and the materials in use. Contact EH&S to be sure an appropriate fire extinguisher is being used for a specific gas.
- **Do not** use flames for detecting leaks. A compatible leak detection solution must be used for leak detection.
- Use spark-proof tools when working with or on a compressed gas cylinder system containing flammable gases
- Post “No Open Flames” signage on access doors to areas that use or store flammable gases.
- Manifold systems must be designed and constructed by competent personnel who are familiar with the requirements for piping of flammable gases. Consultation with the gas supplier before installation of manifolds is recommended.

Fuel gases often use a combination of flammable and oxidizing gases. Use of fuel gases must comply with,

- 29 CFR1910.102--Acetylene
- 29 CFR1910.103--Hydrogen
- Compressed Gas Association (CGA) Pamphlet G-1: “Acetylene”
- CGA Pamphlet SB-8: “Use of Oxy-fuel Gas Welding and Cutting Apparatus”

High pressure gases can be rated up to 3,000 pounds per square inch (psi). Typical uses for high pressure gases include:

- Inert welding gas mixtures
- Cryogenics
• Non-toxic gas distribution
• Medical gas distribution
• Emergency oxygen services

In addition to any gas-specific hazards, high pressure gases should carry a caution label

![CAUTION](image)

Oxidizing gases are non-flammable. Oxidizing gases, but in the presence of an ignition source and fuel can support and vigorously accelerate combustion include:

- Oxygen
- Chlorine
- Fluorine
- Nitrous oxide

Do not use oil in any apparatus where oxygen will be used.

- Gauges and regulators for oxygen shall bear the warning “OXYGEN - USE NO OIL.”

Common toxic or highly toxic gases are listed in Appendix II.

![WARNING](image)

- Some gases, depending on their toxicity and expandable quantities, must be stored in a continuously ventilated gas cabinet, fume hood or other enclosure. Storage quantities are listed in Section 2, Table 1.
- Small quantities (e.g., lecture cylinders), or dilute concentrations of these gases may be stored outside of a ventilated enclosure with prior approval of EH&S or ESH&A.
- Use audible alarms in ventilated hoods or gas cabinets that are dedicated to toxic gas usage or storage.
- Standard operating procedures for processes that use corrosive, toxic or highly toxic gases must be developed and include emergency response actions. All affected personnel must be trained on these procedures.

6. DISPOSAL

Identification and Disposal
• Proper identification of the contents of all cylinders is required and is the responsibility of the cylinder owner.

• Maintain manufacturer labels on cylinders. If a cylinder is empty, label the cylinder with an “Empty” tag.

• Make an effort to rent, rather than purchase gas cylinders.

• Refillable cylinders should be returned to the vendor. Return cylinders with at least 30 pounds of pressure to reduce the risk of foreign materials entering the empty vessel.

• Lecture cylinders must be returned at atmospheric pressure.

• EHS should be contacted for disposal of partially full cylinders or unwanted full cylinders.

• Disposal fees for unknown cylinders are a departmental expense.
LEAKS AND EMERGENCIES

Despite adherence to cylinder safety practices, accidents involving gases may occur. The amount of damage sustained by personnel and property from these accidents is greatly influenced by the quality of the emergency plan. Users of compressed gas cylinders must be familiar with necessary safety precautions. SOPs for using compressed gases must include a discussion of possible accident scenarios, appropriate employee responses and should take into account the following factors:

- The nature of the operation (e.g., experimental design, equipment used and type of injury that could occur.
- The potential location of a release or spill (e.g., outdoors versus indoors, in a laboratory, corridor or storage area, on a table, in a hood, or on the floor).
- The quantities of material that might be released and the type of containment (i.e., compressed gas tank size, manifold systems, etc.).
- The chemical and physical properties of the compressed gas (e.g., its physical state, vapor pressure and air or water reactivity).
- The hazardous properties of the compressed gas (e.g., its toxicity, corrosivity and flammability).
- The availability and locations of emergency supplies and equipment.
- An Emergency Action Plan that identifies building evacuation routes, emergency telephone numbers, chemical containment procedures, fire extinguisher usage, etc.

Occasionally, a gas cylinder or one of its component parts may develop a leak. Most of these leaks occur at the top of the cylinder, in areas such as the valve threads, pressure safety device, valve stem, or the valve outlet. To correct minor leaks:

- For non-toxic gases, verify suspected leaks using a gas detector or soapy water solution (a flame should not be used for detection). If the leak cannot be stopped by tightening a valve gland or packing nut, notify the vendor, if the cylinder is rented. Do not try to fix a leak on a toxic or highly toxic gas cylinder; instead initiate emergency action procedures.
- For flammable (non-toxic), inert or oxidizing gases (non-toxic), move the cylinder to an isolated, well-ventilated area (within or next to a fume hood), away from combustible materials. Post signs that describe the hazard.
- For corrosive and toxic gas leaks, immediately contact EHS remediation or cylinder removal. Do not remove a leaking toxic gas cylinder from a ventilated cabinet.
In the event of a large gas release or if an accident takes place, activate the following emergency procedures:

1. Evacuate the area, securing entrances and providing assistance to others on the way out.
2. Activate building and area fire alarms (or chemical safety alarms if applicable).
3. **Immediately call 911** and report the incident.
4. Provide emergency response officials with details of the problem upon their arrival.

- For medical emergencies call 911.
- Assist persons involved and administer immediate first aid, which may include:
 - Washing under a safety shower (in case of burning clothing or chemical exposures)
 - Removing contaminated clothing
 - Irrigating the eyes at an eyewash station
 - Administering cardiopulmonary resuscitation (CPR)

- Notify personnel in adjacent areas of any potential hazards (e.g., activate building or area alarms).
- Move injured personnel only if necessary to prevent further harm.

For all fire, immediately call 911.

Small, isolated fires within the laboratory may be extinguished using the appropriate portable fire extinguisher, if lab personnel are confident that they can safely extinguish the fire. For large or rapidly spreading fires, the following procedures should be followed:

- Activate building and area alarms.
- Call 911 to report the fire.
- Evacuate the building, shutting doors and providing assistance to others on the way out.
- Provide fire or police officials with the details of the problem upon their arrival.
APPENDIX I

Absolute Pressure - Based on a zero pressure reference point, the perfect vacuum. Measured from this point, standard atmospheric pressure at sea level is 14.7 pounds per square inch (psi) or 101.325 kilo Pascals (kPa). This is usually expressed as psia where the ‘a’ indicates an absolute measurement or kPa.

Asphyxiant Gas - Any non-toxic gas which displaces atmospheric oxygen below limits required to support life. These gases are usually colorless, odorless and tasteless and include, nitrogen, argon and helium.

Compressed Gas - A compressed gas is any gas when enclosed in a container gives:

- An absolute pressure reading greater than 276 kPa (40 psi) at 21°C (70°F) or
- An absolute pressure greater than 717 kPa (104 psi) at 54°C (129.2°F) or
- Any flammable liquid having a vapor pressure greater than 276 kPa (40 psi) at 38°C (100.4°F).

Compressed Gas Cylinder - A compressed gas cylinder is any metal cylinder of the type approved by the U.S. Department of Transportation (DOT) for storage and transportation of gases under pressure, including liquefied gases. Metal cylinders are the only approved DOT packaging for compressed gases.

Corrosive Gas - A gas that is in contact with living tissue causes destruction of the tissue by chemical action.

Cryogenic Liquid - A liquid with a normal boiling point below -150°C (-238°F).

Cryogenic Liquid Cylinder - Pressurized container designed and fabricated to hold cryogenic fluids. There are three common types of liquid cylinders: gas dispensing; liquid dispensing; or gas and liquid dispensing.

Cylinder Valve - A mechanical device attached to a compressed gas cylinder that permits flow into or out of the cylinder, when the device is in the open position and prevents flow when in the closed position.

Dewar - Is an open-mouthed, non-pressurized, vacuum-jacketed container used to hold cryogenic fluids.

Flammable Gas - A material that is a gas at 68°F (20°C) or less at 14.7 pounds per square inch atmosphere (psia) (101 kPa) of pressure [a material that has a boiling point of 68°F (20°C) or less at 14.7 psia (101 kPa)] which:

- Is ignitable at 14.7 psia (101 kPa) when in a mixture of 13 percent or less by volume with air; or
- Has a flammable range at 14.7 psia (101 kPa) with air of at least 12 percent, regardless of the lower limit.

The limits specified shall be determined at 14.7 psi (101 kPa) of pressure and a temperature of 68°F (20°C) in accordance with ASTM E 681.

Gauge Pressure - The pressure above or below atmospheric pressure. Therefore absolute pressure minus local atmospheric pressure equals gauge pressure and is usually abbreviated as psig or kPa.

Handling - Moving, connecting or disconnecting a compressed or liquefied gas container under normal conditions of use.

Highly Toxic Gas - A material which produces a lethal dose concentration that falls within any of the following categories:

A chemical that has a median lethal dose (LD₅₀) of 50 milligrams or less per kilogram of body weight when administered orally to albino rats weighing between 200 and 300 grams each.
A chemical that has a median lethal dose (LD) of 200 milligrams or less per kilogram of body weight when administered by continuous contact for 24 hours (or less if death occurs within 24 hours) with the bare skin of albino rabbits weighing between two and three kilograms each.

A chemical that has a median lethal concentration (LC₅₀) in air of 200 parts per million by volume or less of gas or vapor, or 2 milligrams per liter or less of mist, fume, or dust, when administered by continuous inhalation for 1 hour (or less if death occurs within 1 hour) to albino rats weighing between 200 and 300 grams each.

High Pressure Gas - A gas in a container that has a pressure of 3448 kPa (500 psig) or higher at 21.1°C (70°F).

Inert Gas - A gas which is chemically inactive.

Liquefied Gas - A fluid within a pressurized container, other than in solution, which exists both as a liquid and gas at 20°C (68°F). Examples include propane, butane, ammonia, carbon dioxide, and sulfur dioxide.

Manifold - A gas distribution system which transfers product through multiple outlets/inlets to or from compressed gas containers.

Nonflammable Gas - A gas which, within the packaging, exerts an absolute pressure of 280 kPa (40psi) or greater at 20°C (68°F) but is not a flammable gas as defined previously.

Oxidizing Gas - A gas that can support and accelerate combustion of other materials.

Pressure Regulator - A mechanical device used to safely control the discharge pressure of a compressed gas from a container.

Pressure Relief Device - A pressure and/or temperature activated device used to prevent the pressure from rising above a predetermined maximum and thereby prevent rupture of a pressurized container.

Pyrophoric Gas - A gas that will spontaneously ignite in air at or below 54.4°C (130°F). Examples include silane and phosphine.

SCF - One standard cubic foot of gas at 21°C (70°F) and 101.325 kPa (14.696 psia).

Storage - Holding of gas, in its packaging, either on a temporary basis or for an extended period in such a manner as to not constitute usage of the gas.

Toxic Gas - A chemical falling within any of the following categories:

A chemical that has a median lethal dose (LD₅₀) of more than 50 milligrams per kilogram, but not more than 500 milligrams per kilogram of body weight when administered orally to albino rats weighing between 200 and 300 grams each.

A chemical that has a median lethal dose (LD₅₀) of more than 200 milligrams per kilogram but not more than 1,000 milligrams per kilogram of body weight when administered by continuous contact for 24 hours (or less if death occurs within 24 hours) with the bare skin of albino rabbits weighing between two and three kilograms each.

A chemical that has a median lethal concentration (LC₅₀) in air of more than 200 parts per million but not more than 2,000 parts per million by volume of gas or vapor, or more than two milligrams per liter but not more than 20 milligrams per liter of mist, fume or dust, when administered by continuous inhalation for one hour (or less if death occurs within one hour) to albino rats weighing between 200 and 300 grams each.
II. APPENDIX

Common Compressed and Liquefied Gases that are Flammable or Toxic (Health 3 or 4)*

<table>
<thead>
<tr>
<th>Gas</th>
<th>State</th>
<th>Flammable</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreylene</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Allene (propadiene)</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Ammonia</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Arsine</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Boron Trichloride</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Boron Trifluoride</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>n-Butane</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Iso-Butane</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>1-Butene</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>2-Butene</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Carbonyl Chloride (phosgene)</td>
<td>gas</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>Carbonyl Fluoride</td>
<td>gas</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Cyanogen</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Cyanogen Chloride</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Cylobutane</td>
<td>gas</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Cyclopropane</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Deuterium</td>
<td>gas</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Diazomethane</td>
<td>gas</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Diborane</td>
<td>gas</td>
<td>spontaneously ignitable</td>
<td>3</td>
</tr>
<tr>
<td>1,1-Difluoroethane</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>1,1-Difluoroethylene</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Dimethylamine</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Dimethyl Ether</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>2,2-Dimethylpropane</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Ethane</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Ethylacetyleine</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Ethylamine</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Ethyl Chloride</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Ethylene</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Ethylene Oxide</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Fluorine</td>
<td>gas</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Germane</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Hexafluoroacetone</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas</th>
<th>State</th>
<th>Flammable</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Bromide</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Hydrogen Cyanide</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Hydrogen Fluoride</td>
<td>gas</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>1,1-Difluoroethane</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Hydrogen Selenide</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Ketene</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Methane</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Methylacetylene (propyne)</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Methylamine</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Methyl bromide</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>3-Methyl-1-butene</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Methyl Chloride</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Methyl Ether</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Methyl Fluoride</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Methyl Mercaptan</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>2-methylpropene</td>
<td>gas</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>gas</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Nitric Oxide</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Nitrogen Trichloride</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Nitrogen Trifluoride</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Nitrosyl Chloride</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Oxygen Diffuoride</td>
<td>gas</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>Ozone</td>
<td>gas</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>Pentaozone</td>
<td>liquid</td>
<td>spontaneously ignitable</td>
<td>4</td>
</tr>
<tr>
<td>Iso-Pentane</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Phosphine</td>
<td>gas</td>
<td>spontaneously ignitable</td>
<td>4</td>
</tr>
<tr>
<td>Propane</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Propylene</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Selenium Hexafluoride</td>
<td>gas</td>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>Silane</td>
<td>gas</td>
<td>spontaneously ignitable</td>
<td>3</td>
</tr>
<tr>
<td>Silicon Tetrafluoride</td>
<td>gas</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>Stibine</td>
<td>gas</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Sulfer Tetrafluoride</td>
<td>gas</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>Sulfuryl Fluoride</td>
<td>gas</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>Tetrafluoroethylene, monomer</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Tetrafluorohydrazine</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Trimethylamine</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Vinyl Bromide</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>liquid</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>Vinyl Fluoride</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>Vinyl Methyl Ether</td>
<td>liquid</td>
<td>y</td>
<td>4</td>
</tr>
</tbody>
</table>
APPENDIX III

Cylinder Diagrams

* National Fire Protection Association health ratings
Cylinder Comparison Chart

<table>
<thead>
<tr>
<th>Matheson Tri-Gas</th>
<th>Nominal Dimensions (inches)</th>
<th>Material of Construction</th>
<th>Air Products</th>
<th>Air Liquide</th>
<th>BOC</th>
<th>Praxair</th>
<th>Scott</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L/QK</td>
<td>10x55</td>
<td>C</td>
<td>A</td>
<td>49</td>
<td>300</td>
<td>UCT</td>
<td>K</td>
</tr>
<tr>
<td>1A/QA</td>
<td>9x51</td>
<td>C</td>
<td>B</td>
<td>44</td>
<td>200</td>
<td>K</td>
<td>A</td>
</tr>
<tr>
<td>1R/QX</td>
<td>8x48</td>
<td>A</td>
<td>B (AL)</td>
<td>30AL</td>
<td>150A</td>
<td>AS</td>
<td>AL</td>
</tr>
<tr>
<td>2/GA</td>
<td>9x26</td>
<td>C</td>
<td>C</td>
<td>16</td>
<td>80</td>
<td>Q</td>
<td>B</td>
</tr>
<tr>
<td>2R/GX</td>
<td>7x33</td>
<td>A</td>
<td>C(AL)</td>
<td>22AL</td>
<td>80A</td>
<td>AQ</td>
<td>BL</td>
</tr>
<tr>
<td>3/UA</td>
<td>6x19</td>
<td>C</td>
<td>D-1</td>
<td>7</td>
<td>30</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>3R/UX</td>
<td>7x16</td>
<td>A</td>
<td>D-1(AL)</td>
<td>7AL</td>
<td>30A</td>
<td>AG</td>
<td>CL</td>
</tr>
<tr>
<td>4/JA</td>
<td>4x13</td>
<td>C</td>
<td>D</td>
<td>3</td>
<td>12</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>LB</td>
<td>2x12</td>
<td>C</td>
<td>LB</td>
<td>LB</td>
<td>LB</td>
<td>LB</td>
<td>LB</td>
</tr>
</tbody>
</table>