Examples of Incompatible Chemicals

Chemical	Incompatible With
Acetic Acid	Chromic acid, Nitric acid, hydroxyl compounds, ethylene glycol, perchloric acid, peroxides, permanganates
Acetylene	Chlorine, bromine, copper, fluorine, silver, mercury
Acetone	Concentrated nitric and sulfuric acid mixtures
Alkali \& Alkaline earth metals Aluminum, magnesium, Calcium, lithium, sodium, potassium	Water, carbon tetrachloride or other chlorinated hydrocarbons, carbon dioxide, halogens
Ammonia (anhydrous)	Mercury, chlorine, calcium hypochlorite, iodine, bromine, hydrofluoric acid (anhydrous)
Ammonium nitrate	Acids, powdered metals, flammable liquids, chlorates, nitrates, sulfur, finely divided organic combustible materials
Aniline	Nitric acid, hydrogen peroxide
Arsenical Materials	Any reducing agent
Azides	Acids
Bromine	See chlorine
Calcium oxide	Water
Carbon (activated)	Calcium hypochlorite, all oxidizing agents
Carbon tetrachloride	Sodium
Chlorates	Ammonium salts, acids, powdered metals, sulfur, finely divided organic or combustible materials

Chromic acid \& Acetic acid, naphthalene, camphor, glycerol, alcohol, flammable liquids Chromium trioxide
$\begin{array}{ll}\text { Chlorine } & \begin{array}{l}\text { Ammonia, acetylene, butadiene, butane, methane, propane (other } \\ \text { petroleum gases), hydrogen, sodium carbide, benzene, finely divided }\end{array}\end{array}$ metals, turpentine

Chlorine dioxide Ammonia, methane, phosphine, hydrogen sulfide
Copper Acetylene, hydrogen peroxide
Cumene Acids (organic or inorganic)
hydroperoxide
Cyanides Acids
Flammable liquids Ammonium nitrate, chromic acid, hydrogen peroxide, nitric acid, sodium peroxide, halogens

Fluorine All other chemicals
Hydrocarbons Fluorine, chlorine, bromine, chromic acid, sodium peroxide
Hydrocyanic acid Nitric acid, alkali
Hydrofluoric acid Ammonia
Hydrogen peroxide Copper, chromium, iron, most metals or their salts, alcohols, acetone, organic materials, aniline, nitromethane, combustible materials

Hydrogen sulfide Fuming nitric acid, oxidizing gases
Hypochlorites Acids, activated carbon
Iodine Acetylene, ammonia, hydrogen
Mercury Acetylene, fulminic acid, ammonia
Nitrates Sulfuric acid
Nitric acid Acetic acid, aniline, chromic acid, hydrocyanic acid, hydrogen sulfide, (concentrated) flammable liquids, flammable gases, copper, brass, any heavy metals

Nitrites Acids
Nitroparaffins Inorganic bases, amines

Oxalic acid Silver, mercury
Oxygen Oils, grease, hydrogen, flammable liquids, solids, or gases
Perchloric acid Acetic anhydride, bismuth and it s alloys, alcohol, paper, wood, grease, oils

Peroxides, organic Acids (organic or mineral), avoid friction, store cold
Phosphorous
(white)
Potassium Carbon tetrachloride, carbon dioxide, water
Potassium Sulfuric and other acids
chlorate
Potassium
Perchlorate
Potassium
Permanganate
Selenides Reducing agents
Silver Acetylene, oxalic acid, tartaric acid, ammonium compounds, fulminic acid

Sodium Carbon tetrachloride, carbon dioxide, wa ter
Sodium nitrite Ammonium nitrate and other ammonium salts
Sodium peroxide Ethyl or methyl alcohol, glacial acetic acid, acetic anhydride, benzaldehyde, carbon disulfide, glycerin, ethylene glycol, ethyl acetate, methyl acetate, furfural

Sulfides
Acids

Sulfuric acid Potassium chlorate, potassium perchlorate, potassium permanganate (similar compounds of light metals such as sodium, lithium)

Tellurides Reducing agents

Potentially Explosive Chemical and Reagent Combinations

Some chemical and reagent combinations have potential for producing a violent explosion when subject to shock or friction.

The following tables list some common laboratory reagents that can produce explosions when they are brought together or that give reaction products that can explode without apparent external initiating action.

This list is not all inclusive, but includes the most common incompatible combinations.

Shock Sensitive Compounds

Acetylenic compounds, especially polyacetylenes, haloacetylenes, and heavy metal salts of acetylenes (copper, silver, and mercury salts are particularly sensitive).

Acyl nitrates
Alkyl nitrates, particularly polyol nitrates such as nitrocellulose and nitroglycerine
Alkyl an acyl nitrites
Alkyl perchlorates
Amminemetal oxosalts: metal compounds with coordinated ammonia, hydrazine, or similar nitrogenous donors and ionic perchlorate, nitrate, permanganate, or other oxidizing group.

Azides, including metal, nonmetal, and organic azides.
Chlorite salts of metals such as AgCIO_{2} and $\mathrm{Hg}\left(\mathrm{CIO}_{2}\right)_{2}$
Diazo compounds such as $\mathrm{CH}_{2} \mathrm{~N}_{2}$
Diazonium salts, when dry
Fulminates (silver fulminate, AgCNO , can form in the reaction mixture from the Tolens' test for aldehydes if it is allowed to stand for some time; this can be prevented by adding dilute nitric acid to the test mixture as soon as the test has been completed).

Hydrogen peroxide becomes increasingly treacherous as the concentration rises above 30%, forming explosive mixtures with organic materials and decomposing violently in the presence of traces of transition metals.

N -Halogen compounds such as difluoroamino compounds and halogen azides.

N -Nitro compounds such as N-nitromethalymine, nitrourea, nitroguanidine, and nitric amide
Oxo salts of nitrogenous bases: perchlorates, dichromates, nitrates, iodates, chlorites, chlorates, and permanganates of ammonia, amines, hydroxylamine, guanidine, etc.

Perchlorate salts. Most metal, non-metal, and amine perchlorates can be detonated and may undergo violent reaction in contact with combustible materials.

Peroxides and hydroperoxides, organic
Peroxides, transition-metal salts
Picrates, especially salts of transition and heavy metals such as $\mathrm{Ni}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{Cu}$, and Zn ; picric acid is explosive but is less sensitive to shock or friction that its metal salts and is relatively safe as a water-wet paste.

Polynitroalkyl compounds such as tetranitromethane and dinitroacetonitrile

Polynitroaromatic compounds, especially polynitro hydrocarbons, phenols, and amines

Potentially Explosive Combinations of Common Reagents

Acetone + chloroform in the presence of base
Acetylene + copper, silver, mercury or their salts
Ammonia (including aquaeous solutions) $+\mathrm{Cl}_{2}, \mathrm{Br}_{2}$, or I_{2}

Carbon disulfide + sodium azide
Chlorine + an alcohol
Chloroform or carbon tetrachloride + powdered Al or Mg
Decolorizing carbon + an oxidizing agent
Diethyl ether + chlorine (including a chlorine atmosphere)
Dimethyl sulfoxide $+\mathrm{CrO}_{3}$
Ethanol + calcium hypochlorite

Ethanol + silver nitrate
Nitric acid + acetic anhydride or acetic acid

Picric acid + a heavy metal salt such as Pb, Hg, or Ag
Silver oxide + Ammonia + ethanol
Sodium + a chlorinated hydrocarbon
Sodium hypochlorite + an amine

